Biomechanical Characterization of Cardiomyocyte Using PDMS Pillar with Microgrooves

نویسندگان

  • Nomin-Erdene Oyunbaatar
  • Deok-Hyu Lee
  • Swati J. Patil
  • Eung-Sam Kim
  • Dong-Weon Lee
چکیده

This paper describes the surface-patterned polydimethylsiloxane (PDMS) pillar arrays for enhancing cell alignment and contraction force in cardiomyocytes. The PDMS micropillar (μpillar) arrays with microgrooves (μgrooves) were fabricated using a unique micro-mold made using SU-8 double layer processes. The spring constant of the μpillar arrays was experimentally confirmed using atomic force microscopy (AFM). After culturing cardiac cells on the two different types of μpillar arrays, with and without grooves on the top of μpillar, the characteristics of the cardiomyocytes were analyzed using a custom-made image analysis system. The alignment of the cardiomyocytes on the μgrooves of the μpillars was clearly observed using a DAPI staining process. The mechanical force generated by the contraction force of the cardiomyocytes was derived from the displacement of the μpillar arrays. The contraction force of the cardiomyocytes aligned on the μgrooves was 20% higher than that of the μpillar arrays without μgrooves. The experimental results prove that applied geometrical stimulus is an effective method for aligning and improving the contraction force of cardiomyocytes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetically Engineered Phage Induced Selective H9c2 Cardiomyocytes Patterning in PDMS Microgrooves

A micro-patterned cell adhesive surface was prepared for future design of medical devices. One-dimensional polydimethylsiloxane (PDMS) micro-patterns were prepared by a photolithography process. Afterwards, recombinant filamentous phages that displayed a short binding motif with a cell adhesive peptide (-RGD-) on p8 proteins were immobilized on PDMS microgrooves through simple contact printing ...

متن کامل

Responsive microgrooves for the formation of harvestable tissue constructs.

Given its biocompatibility, elasticity, and gas permeability, poly(dimethylsiloxane) (PDMS) is widely used to fabricate microgrooves and microfluidic devices for three-dimensional (3D) cell culture studies. However, conformal coating of complex PDMS devices prepared by standard microfabrication techniques with desired chemical functionality is challenging. This study describes the conformal coa...

متن کامل

Quantitative analysis of hepatic cell morphology and migration in response to nanoporous and microgrooved surface structures

Material surface topography is an important factor for regulating cellular behaviour. Understanding the mechanism of how surface topography influences mammalian cells is critical for the development of medical implants and tissue engineering. In this study, we investigated the influences of nanoporous and microgrooved substrates on the morphology and migration of hepatic cell line, BEL-7402 cel...

متن کامل

Fabrication of a Polymer High-Aspect-Ratio Pillar Array Using UV Imprinting

This paper presents UV imprinting methods for fabricating a high-aspect-ratio pillar array. A polydimethylsiloxane (PDMS) mold was selected as the UV imprinting mold. The pillar pattern was formed on a 50 × 50 mm area on a polyethylene terephthalate (PET) film without remarkable deformation. The aspect ratios of the pillar and space were about four and ten, respectively. The mold was placed int...

متن کامل

Investigation of structural, morphological and dynamic mechanical properties of unvulcanized PDMS/silica compound

In this study, the interaction between the silica filler and polydimethylsiloxanes (PDMS) was investigated from the aspects of the bound rubber and morphological characterization. With special attention to the dynamic properties, the dynamic test was conducted by dynamic shear rheometer. The results show that the modified fillers disperse uniformly within PDMS matrix without aggregation and con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016